Лаборатория функциональных наноматериалов

Заведующий лабораторией - д.ф.-м.н. М. Попов

Область интересов

  • Новые углеродные материалы, включая нанофрагментированные и модифицированные углеродными нанокластерами материалы.
  • Материаловедение, физика твердого тела, физика высоких давлений, механика твердого деформированного тела, сверхтвердые материалы и керамика.
  • Комбинационное рассеяние света в углеродных нанокластерных материалах и композитах на их основе.
  • Транспортные свойства твердых тел.

Общие результаты

  • Обнаружен эффект формирования ультратвердого фуллерита при каталитической реакции 3D полимеризации С60.
  • Разработана концепция модифицированных и нанофрагментированных фуллереном С60 материалов, свойства которых определяются концентрацией С60, размерами нанокристаллов и связями между ними и С60.
  • Получены новые материалы с существенно улучшенными транспортными и механическими свойствами.
  • Материалы и методики их синтеза могут использоваться в промышленности.

Каталитический синтез ультратвердого фуллерита

Давление синтеза ультратвердого фуллерита при использовании катализатора понижается более чем в два раза. Так, в условиях сдвиговых деформаций при комнатной температуре давление понижается с 18 до 7 ГПа; с ростом температуры наблюдается дальнейшее понижение давления синтеза.


Алмазные наковальни, деформированные при синтезе ультратвердого фуллерита:
(а) общий вид наковальни, (б) × 3000


а) Фотография индентора Виккерса, изготовленного из ультратвердого фуллерита

б) Изображения отпечатков, сделанных этим индентором на грани (111) безазотного алмаза (с содержанием азота 0,3 ppm) при нагрузке 3 Н (верхний рисунок)
и 2 Н (нижний рисунок).
     а)                                 б)  


Модифицированные и нанофрагментированные фуллереном С60 материалы

Для наноструктурированного алюминия, модифицированного С60, достигнут теоретический предел сдвиговой прочности

Пример:
Зависимость твердости наноструктурированного алюминия, модифицированного С60, от размера зерна. Наибольшая величина твердости Н для Al-С60 достигает 7 ГПа, что соответствует пределу текучести τ* ≈ 0.33 H ≈ 2 ГПа. При этом теоретическая сдвиговая прочность алюминия также составляет τ*theor ≈ G/(10-15) ≈ 2 ГПа (сдвиговый модуль алюминия G = 27 ГПа).


Модифицированные и нанофрагментированные углеродными нанокластерами термоэлектрические материалы на основе Bi2Te3 и Si-Ge.

  • Получены композиты, состоящие из нанокристаллов термоэлектричесго материала, покрытых слоями молекул С60 или иными углеродными нанокластерами.
  • Углеродные слоистые структуры препятствуют рекристаллизации нанокристаллов при спекании.
  • Обнаружено изменение электронных транспортных свойств (коэффициент Зеебека S, электропроводность σ, подвижность μ) за счет эффекта квантовой локализации.
  • В полученных нанокомпозитах наблюдается независимая вариация параметров S, σ, k и, как результат, достигается увеличение термоэлетрической эффективности ZT = S2σT/k на 20%.
  • Материалы и методики их синтеза могут использоваться в промышленности.


(а) - Спеченные объемные образцы термоэлектрического наноструктурированного сплава Si-Ge;
(б) - электронная микроскопия наноструктурированного термоэлектричского сплава Si-Ge со средним размером зерен 10-20 нм;
(в) - нанокристаллы Bi-Sb-Te, покрытые С60.

Сотрудники лаборатории


М. Попов (к.ф.-м.н.) - заведующий лабораторией
Д. Овсянников (м.н.с.)
О. Пономарев (стажер-исследователь)
М. Алексеев (стажер-исследователь)
Д. Бурцев (лаборант-исследователь)


Публикации лаборатории функциональных наноматериалов


2009 - 2014:

  • M. Popov, B. Kulnitskiy, and V. Blank, Superhard materials based on fullerenes and nanotubes. In: Comprehensive hard materials , ed. V.K. Sarin (Editor-in-Chief) and C.E. Nebel (Vol.Ed.), (Elsevier, 2014) pp. 515-538., total 1800p. ISBN: 9780080965277
  • M. Popov, V. Mordkovich, S. Perfilov, A. Kirichenko, B. Kulnitskiy, I. Perezhogin, V. Blank. Synthesis of ultrahard fullerite with a catalytic 3D polymerization reaction of C60, Carbon 76, 250-256 (2014), doi: 10.1016/j.carbon.2014.04.075, http://dx.doi.org/10.1016/j.carbon.2014.04.075, Impact factor 6,350
  • M. Popov, R. Gayazov, F. Khadzhiyskiy, V. Medvedev, V. Krivtsun, A. Kirichenko, B. Kulnitskiy, I. Perezhogin, E. Tyukalova, and V. Blank. C60 three-dimensional polymerization by impulse heating effect. Journal of Applied Physics 115, 153506(1-5) (2014); doi: 10.1063/1.4871777, http://dx.doi.org/10.1063/1.4871777, Impact factor 2.210
  • G S Bezruchko, S V Razorenov and M Y Popov. The influence of the admixture of the fullerene C60 on the strength properties of aluminum and copper under shock-wave loading. Journal of Physics: Conference Series 500, 112008(1-6) (2014), doi:10.1088/1742-6596/500/11/112008
  • Г.С. Безручко, С.В. Разоренов, М.Ю. Попов. Влияние добавки фуллерена C60 на прочностные свойства нанокристаллической меди и алюминия при ударно-волновом нагружении. Журнал технической физики, 2014, том 84, вып. 3, с. 69-74, http://journals.ioffe.ru/jtf/2014/03/page-69.html.ru, http://journals.ioffe.ru/jtf/2014/03/p69-74.pdf, Impact factor 0.552
  • Овсянников Д.А., Попов М.Ю., Буга С.Г., Кириченко А.Н., Тарелкин С.А., Аксененков В.В. Влияние нанофрагментирования и модификации фуллереном германия на транспортные свойства нанокомпозита Ge-С60. ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ том 56 вып. 7, 63-67 (2013)
  • V.A. Kulbachinskii, V.G. Kytin, M.Yu. Popov, S.G. Buga, P.B. Stepanov, V.D. Blank. Composites of Bi2–xSbxTe3 nanocrystals and fullerene molecules for thermoelectricity. Journal of Solid State Chemistry, 193, 64-70 ( 2012) , DOI: 10.1016/j.jssc.2012.03.065 Impact factor 2.040.
  • Kulbachinskii V., Kytin V., Popov M., Buga S., Blank V., Stepanov P.THERMOELECTRIC PROPERTIES OF NANOSTRUCTURED BI-SB-TE DOPED WITH C 60 AIP Conference Proceedings "9th European Conference on Thermoelectrics, ECT 2011" 2012. С. 283-286 DOI: 10.1063/1.4731552
  • М.Ю. Попов, В.Д. Бланк. Механические свойства сверхтвердых и ультратвердых материалов на основе углеродных нанокластеров. Все материалы. Энциклопедический справочник. 2012, №8, стр. 43-48.
  • V. D. Blank, S. G. Buga, V. A. Kulbachinskii, V. G. Kytin, V. V. Medvedev, M. Yu. Popov, P. B. Stepanov, and V. F. Skok. Thermoelectric properties of Bi0.5Sb1.5Te3/C60 nanocomposites. Physical Review B 86, 075426 (2012) , DOI: 10.1103/PhysRevB.86.075426 Impact factor 3.767.
  • Д. А. Овсянников, М.Ю. Попов, С. Г. Буга, В. В. Аксененков, А. Н. Кириченко, Р. Л. Ломакин, С. А. Тарелкин, Е. В. Татьянин, В. Д. Бланк. Электрические свойства наноструктурированного германия и нанокомпозитов Ge-C60. ТРУДЫ МФТИ. — 2012. — Том 4, № 3, стр. 36-43.
  • А.А Замешин, М.Ю. Попов, В. В. Медведев, С. А. Перфилов, Р. Л. Ломакин, С. Г. Буга, В. Н. Денисов, А. Н. Кириченко, Е. В. Татьянин, В. В. Аксененков, В. Д. Бланк. Электропроводность нанофрагментированного и модифицированного фуллереном алюминия. ТРУДЫ МФТИ. — 2012. — Том 4, № 3, стр. 74-84.
  • A. Zameshin, M. Popov, V. Medvedev, S. Perfilov, R. Lomakin, S. Buga, V. Denisov, A. Kirichenko, E. Skryleva, E. Tatyanin, V. Aksenenkov , V. Blank. Electrical conductivity of nanostructured and C60-modified aluminum. Applied Physics A, 107 (2012), 863-869, DOI: 10.1007/s00339-012-6805-x Impact factor 1.545.
  • V. V. Medvedev, M. Y. Popov, B. N. Mavrin, V. N. Denisov, A. Kirichenko, E. V. Tat’yanin, L. A. Ivanov, V. V. Aksenenkov, S. A. Perfilov, R. Lomakin and V.D. Blank. Cu–C60 nanocomposite with suppressed recrystallization. Applied Physics A, 105 (2011), 45-48. DOI: 10.1007/s00339-011-6544-4 (2011) , Impact factor 1.545.
  • Popov M., Buga S., Vysikaylo Ph., Stepanov P., Tatyanin E., Medvedev V., Denisov V., Kirichenko A., Aksenenkov V., Skok V., Blank V. C60-doping of nanostructured Bi-Sb-Te thermoelectrics. Phys. Status Solidi A, 208 (2011), 2783–2789, DOI 10.1002/pssa.201127075 , Impact factor 1.469
  • В.А. Кульбачинский, В.Г. Кытин, В.Д. Бланк, С.Г. Буга, М.Ю. Попов. Термоэлектрические свойства нанокомпозитов теллурида висмута с фуллеренами. Физика и техника полупроводников, 2011, том 45, вып. 9, 1241-1245 (Semiconductors, 45 (2011), 1194-1198 DOI: 10.1134/S1063782611090132 Impact factor 0.600.
  • M. Popov, V. Medvedev, V. Blank, V. Denisov, A. Kirichenko, E. Tat'yanin, V. Aksenenkov, S. Perfilov, R. Lomakin, E. D'yakov, and V. Zaitsev Fulleride of aluminum nanoclusters. Journal of Applied Physics, 108 (2010) 094317, DOI: 10.1063/1.3505757 Impact factor 2.210.
  • M. Popov. Stress-induced phase transitions in diamond. High Pressure Research 30 (2010), 670–678, DOI: 10.1080/08957959.2010.525510 Impact factor 0.901.
  • Patent RU2504858, 20.01.2014, priority 07.07.2011. Автоэмиссионный катод. Бормашов В.С., Волков А.П., Буга С.Г., Попов М.Ю., Перфилов С.А., Лупарев Н.В., Кондрашов К.В., Ломакин Р.Л., Медведев В.В.
  • Patent RU2474010, 20.09.2011, priority 09.03.2010. Нанокомпозитный термоэлектрик и способ его получения. Попов М.Ю., Высикайло Ф.И., Буга С.Г., Бланк В.Д., Денисов В.Н., Кириченко А. Н., Кульбачинский В.А., Кытин В.Г., Пивоваров Г.И.
  • Patent EP 2322475 Method of synthesis of a fulleride of metal nano-cluster and material comprising a fulleride of metal nano-cluster. M. Popov, G. Pivovarov, V. Blank, 18.05.2011, priority 17.11.2009.
  • Patent EP2248195, US73598108 M. Popov, G. Pivovarov, E. Tat'yanin, V. Blank. Thermoelectric nanocomposite, method for making the nanocomposite and application of the nanocomposite. 10.11.2010, priority 29.02.2008 (Patent application WO 2009/110815)